Product Description
Product Parameters
S series geared motor speed reducer with 90 Degree Gear box
Components:
1. Housing: Cast Iron
2. Gears: Helical-worm Gears
3. Input Configurations: Equipped with Electric Motors
Solid Shaft Input, IEC-normalized Motor Flange
4. Applicable Motors:
Single Phase AC Motor, Three Phase AC Motor
Brake Motors, Inverter Motors
Multi-speed Motors, Explosion-proof Motor
Roller Motor
5. Output Configurations: CZPT Shaft Output
Hollow Shaft Output.
Features:
1. Modular design, compact structure
2. Low noise
3. Hollow output shaft with keyed connection, shrink disk, or torque arm
4. Can be combined with other types of gearboxes (Such as R Series, UDL Series)
Models |
Output Shaft Dia. |
Input Shaft Dia. |
Power(kW) |
Ratio |
Max. Torque(Nm) |
|
Solid Shaft |
Hollow Shaft |
|||||
S38 |
20mm |
20mm |
16mm |
0.18~0.75 |
10.27~152 |
90 |
S48 |
25mm |
25/30mm |
16mm |
0.18~1.5 |
11.46~244.74 |
170 |
S58 |
30mm |
30/35mm |
16mm |
0.18~3 |
10.78~196.21 |
295 |
S68 |
35mm |
40/45mm |
19mm |
0.25~5.5 |
11.55~22 |
520 |
S78 |
45mm |
50/60mm |
24mm |
0.55~7.5 |
9.96~241.09 |
1270 |
S88 |
60mm |
60/70mm |
28mm |
0.75~15 |
11.83~222 |
2280 |
S98 |
70mm |
70/90mm |
38mm |
1.5~22 |
12.75~230.48 |
4000 |
Hardness: | Hardened Tooth Surface |
---|---|
Installation: | 90 Degree |
Layout: | Expansion |
Gear Shape: | Bevel Gear |
Step: | Single-Step |
Type: | Gear Reducer |
Samples: |
US$ 150/Piece
1 Piece(Min.Order) | |
---|
Common Problems and Troubleshooting for Worm Gearboxes
Worm gearboxes, like any mechanical component, can experience various issues over time. Here are some common problems that may arise and possible troubleshooting steps:
- Overheating: Overheating can occur due to factors such as inadequate lubrication, excessive loads, or high operating temperatures. Check lubrication levels, ensure proper ventilation, and reduce loads if necessary.
- Noise and Vibration: Excessive noise and vibration may result from misalignment, worn gears, or improper meshing. Check for misalignment, inspect gear teeth for wear, and ensure proper gear meshing.
- Leakage: Oil leakage can be caused by damaged seals or gaskets. Inspect seals and gaskets, and replace them if necessary.
- Reduced Efficiency: Efficiency loss can occur due to friction, wear, or misalignment. Regularly monitor gearbox performance, ensure proper lubrication, and address any wear or misalignment issues.
- Backlash: Excessive backlash can affect precision and accuracy. Adjust gear meshing and reduce backlash to improve performance.
- Seizure or Binding: Seizure or binding can result from inadequate lubrication, debris, or misalignment. Clean the gearbox, ensure proper lubrication, and address misalignment issues.
- Worn Gears: Worn gear teeth can lead to poor performance. Regularly inspect gears for signs of wear, and replace worn gears as needed.
- Seal Wear: Seals can wear over time, leading to leakage and contamination. Inspect seals regularly and replace them if necessary.
If you encounter any of these problems, it’s important to address them promptly to prevent further damage and maintain the performance of your worm gearbox. Regular maintenance, proper lubrication, and addressing issues early can help extend the lifespan and reliability of the gearbox.
Worm Gearbox vs. Helical Gearbox: A Comparison
Worm gearboxes and helical gearboxes are two popular types of gear systems, each with its own set of advantages and disadvantages. Let’s compare them:
Aspect | Worm Gearbox | Helical Gearbox |
Efficiency | Lower efficiency due to sliding friction between the worm and worm wheel. | Higher efficiency due to rolling contact between helical gear teeth. |
Torque Transmission | Excellent torque transmission and high reduction ratios achievable in a single stage. | Good torque transmission, but may require multiple stages for high reduction ratios. |
Noise and Vibration | Generally higher noise and vibration levels due to sliding action. | Lower noise and vibration levels due to smoother rolling contact. |
Backlash | Higher inherent backlash due to the design. | Lower backlash due to meshing of helical teeth. |
Efficiency at Higher Speeds | Less suitable for high-speed applications due to efficiency loss. | More suitable for high-speed applications due to higher efficiency. |
Overload Protection | Natural self-locking feature provides some overload protection. | May not have the same level of inherent overload protection. |
Applications | Commonly used for applications requiring high reduction ratios, such as conveyor systems and heavy-duty machinery. | Widely used in various applications including automotive transmissions, industrial machinery, and more. |
Both worm and helical gearboxes have their place in engineering, and the choice between them depends on the specific requirements of the application. Worm gearboxes are preferred for applications with high reduction ratios, while helical gearboxes are chosen for their higher efficiency and smoother operation.
How to Select the Right Worm Gearbox for Your Application
Selecting the right worm gearbox for your application involves careful consideration of various factors:
- Load Requirements: Determine the torque and load requirements of your application to ensure the selected gearbox can handle the load without compromising performance.
- Speed Reduction: Calculate the required gear reduction ratio to achieve the desired output speed. Worm gearboxes are known for high reduction ratios.
- Efficiency: Consider the gearbox’s efficiency, as worm gearboxes typically have lower efficiency due to the sliding action. Evaluate whether the efficiency meets your application’s needs.
- Space Constraints: Assess the available space for the gearbox. Worm gearboxes have a compact design, making them suitable for applications with limited space.
- Mounting Options: Determine the mounting orientation and configuration that best suits your application.
- Operating Environment: Consider factors such as temperature, humidity, and exposure to contaminants. Choose a gearbox with appropriate seals and materials to withstand the environment.
- Backlash: Evaluate the acceptable level of backlash in your application. Worm gearboxes may exhibit more backlash compared to other gear types.
- Self-Locking: If self-locking capability is required, confirm that the selected gearbox can prevent reverse motion without the need for external braking mechanisms.
- Maintenance: Consider the maintenance requirements of the gearbox. Some worm gearboxes require periodic lubrication and maintenance to ensure proper functioning.
- Cost: Balance the features and performance of the gearbox with the overall cost to ensure it aligns with your budget.
Consult with gearbox manufacturers or experts to get recommendations tailored to your specific application. Testing and simulations can also help validate the suitability of a particular gearbox for your needs.
editor by CX 2023-09-06